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A New Look at  the Statistical Model  Identification 
HIROTUGU  AI(AIKE, JIEJIBER, IEEE 

Abstract-The  history of the development of statistical  hypothesis 
testing in time  series  analysis is reviewed  briefly  and it  is pointed 
out that  the  hypothesis  testing  procedure is not  adequately  defined 
as the procedure  for  statistical  model  identilication.  The  classical 
maximum  likelihood  estimation  procedure is reviewed and a  new 
estimate  minimum  information  theoretical  criterion (AIC) estimate 
(MAICE) which is designed  for the purpose of statistical  identifica- 
tion is  introduced.  When  there  are  several competing  models the 
MAICE is defined by the model and  the  maximum likelihood  esti- 
mates of the  parameters which  give the minimum of AIC defined by 

AIC = (-2)log(maximum likelihood) + 2(number of 

independently  adjusted  parameters within the model). 

MAICE provides  a  versatile  procedure for  statistical  model  identi- 
fication  which  is free  from  the  ambiguities  inherent in the application 
of conventional  hypothesis  testing  procedure. The practical utility of 
MAICE in  time  series  analysis  is  demonstrated with some  numerical 
examples. 

I 
I. IXTRODUCTION 

X spite of the recent, development of t.he use of statis- 
tical  concepts and models in almost, every field of engi- 

neering and science it seems as if the difficulty of con- 
structing  an  adequate model based on the information 
provided  by  a  finite  number of observations is not  fully 
recognized. Undoubtedly the subject of statistical model 
construction or ident.ification is heavily  dependent  on the 
results of theoret.ica1 analyses of the object. under observa- 
tion. Yet. it must be realized that  there is usually  a big gap 
betn-een the theoretical  results  and the pract,ical proce- 
dures of identification. A typical example is the gap between 
the results of the theory of minimal realizations of a  linear 
system and  the  identifichon of a  Markovian  representa- 
tion of a  stochastic process based  on  a record of finite 
duration. A minimal  realization of a linear  system is 
usually defined through t.he analysis of the  rank or the 
dependence  relation of the rows or columns of some 
Hankel  matrix [l]. In  a  practical  situation, even if the 
Hankel matrix is theoretically given! the rounding errors 
will always  make the  matrix of full rank. If the matrix is 
obtained  from  a record of obserrat.ions of a  real  object the 
sampling  variabilities of the elements of the matrix  nil1 be 
by  far  the greater  than  the rounding  errors and also the 
system n-ill always be infinite  dimensional. Thus it can  be 
seen that  the subject of statistical  identification is essen- 
tially concerned with the  art of approximation n-hich is a 
basic element of human  intellectual  activity. 

As was noticed  by  Lehman 12, p.  viii],  hypothesis 
t,esting procedures arc  traditionally  applied to  the situ- 
ations where actually  multiple decision procedures are 
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required. If the statistical  identification  procedure is con- 
sidered as a decision procedure the very basic problem is 
the appropriate choice of t,he loss function. In  the S e y -  
man-Pearson theory of stat.istica1 hypothesis  testing only 
the probabilit.ies of rejecting and accepting the correct 
and incorrect hypotheses,  respectively, are considered to  
define the loss caused by the decision. In practical  situ- 
ations the assumed  null  hypotheses are only approxima- 
tions  and  they  are almost ah-ays different from the 
reality. Thus  the choice of the loss function in the test. 
theory  makes  its practical  application logically contra- 
dictory. The rwognit,ion of this point that  the hypothesis 
testing  procedure  is  not  adequa.tely  formulated as a pro- 
cedure of approximation is very  important for the de- 
velopment of pracbically useful  identification  procedures. 

A nen- perspective of the problem of identification is 
obtained  by the analysis of t,he  very  practical and success- 
ful method of maximum likelihood. The fact. t.hat the 
maximum likelihood estimates  are.  under  certain regu- 
larity conditions,  asymptot.ically efficient shom  that  the 
likelihood function tends  to bc  a quantity which is most. 
sensitive to  the small  variations of the parameters  around 
the  true values. This observation  suggests thc use of 

S(g;f(. ! e ) )  = J g ( . ~ )  hgf(.@j d . ~  
as  a  criterion of “fit” of a model with thc probabilist.ic. 
structure defined by the probability  density  function 
j(@) to  the  structure defined hy the density  function g ( x ) .  
Contrary  to  the  assumption of a single family of density 
f ( x ‘ 0 )  in the classical maximum likelihood estimation 
procedure,  several alternative models or families defined 
by  the densities n-ith different forms and/or  with one and 
the same  form but  with different restrictions on the 
parameter  vector e arc contemplated  in the usual situation 
of ident.ification. A detailed  analysis of the maximum 
likelihood estimate (MLE) leads  naturally  to  a definition 
of a nen- estimate x\-hich is useful for this  type of multiple 
model situation.  The new estimate is called the minimum 
information  theoretic  criterion (AIC) estimate (IIAICE), 
where -$IC stands for an information  theoretic  criterion 
recently  introduced  by the present author [3] and is an 
estimate of a measurp of fit of the model. XIICE is de- 
fined by  the model and  its  parameter valucs which give the 
minimum of AIC. B -  the introduction of ILUCE the 
problem of statistical  identification is explicitly formulated 
as a problem of estimation and  the need of the  subjective 
judgement  required in the hypothesis  testing  procedure 
for the decision on the levels of significance is completely 
eliminated. To give  an explicit definition of IIdICE and  to 
discuss its characteristics by comparison with the con- 
ventional  identification  procedure  based on estimation 
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and hypothesis testing  form  the main objectives of the 
present pa.per. 

Although MAICE provides a versatile  method of 
identification which can  be used in  every field of st.atist,ica.l 
model building, its pract.ica1 utility  in  time series analysis 
is quit,e significant. Some numerical examples are given to  
show how MAICE ca.n give objectively defined ansm-ers 
to  the problems of time series analysis in  contrast  with t.he 
conventional  approach by hypothesis  testing which can 
only give subject.ive and often inconclusive answers. 

11. HYPOTHESIS TESTING IN TIME SERIES ANALYSIS 

The  study of t,he  t,esting  procedure of time series start,ed 
with t.he investigation of the test. of a. simple hypot,hesis 
t,hat a. single serial  correlation coefficient. is equal t.o 0. 
The utilit,y of this t.ype of t.est, is  certa,inly t.oo limit,ed to  
make it a generally useful procedure  for model identifica- 
tion. In  1%7 Quenouille 143 int.roduced  a test for the 
goodness of fit of a.utoregressive (AR) models. The idea of 
the Quenouille’s test was extended by Wold [5] to  a test of 
goodness of fit of moving average (31-4) models. Several 
refinements and generalizations of these  test.  procedures 
followed [GI-[9] but a most, significant contribut,ion to trhe 
subject, of hypothesis  testing  in  time series analysis was 
made  by  Whittle [lo], [ l l ]  by a  systematic  application of 
the 7Veyma.n-Pearson likelihood ratio t.est. procedure to  
t.he time series situation. 

A  very basic test of t,ime series is the test, of whiteness. 
In  many  situations of model identification the whiteness 
of the residual series after fitt,ing a model is required as a 
proof of adequacy of the model and  the  test of whitreness 
is widely used in  practical  applications [12]-[15]. For the 
test of whiteness the analysis of t,he periodgram  provides a 
general  solution. 

,4 good exposition of the classical hypothesis testing 
procedures  including the test.s  based on  the periodgrams  is 
given in  Hannan [16]. 

The fitting of AR or RIA models is essentially a. subject 
of multiple decision procedure rather  than  t,hat, of hy- 
pothesis  testing. Anderson [17] discussed the determination 
of the order of a  Gaussian AR process explicit,ly as a 
multiple decision procedure. The procedure takes a form 
of a  sequence of tests of the models starting a.t the highest 
order  and successively down t.0 the lowest. order. To 
apply t:he procedure t.0 a  real  problem one has to specify the 
level of signifimnce of the t.est  for  each  order of the model. 
Although  t.he  procedure is designed to  satisfy  certain 
clearly defined condition of optimalitg, the essential 
difficulty of the problem of order  determination  remains 
as the difficulty in choosing the levels of significance. 
Also the loss function of t.he decision procedure is defined 
by the probability of making  incorrect, decisions and  thus 
the procedure is not  free from the 1ogica.l cont.radict.ion 
that  in practical  applicat,ions the order of the  true  struc- 
t.ure will always be infinite.  This difficulty can  only be 
avoided b -  reformulat,ing  t.he  problem explicitly as a 
problem of approximation of the  true st,ructure by the 
model. 

111. DIRECT APPROACH TO MODEL ERROR CONTROL 

In  the field of nont,ime series regression analysis  Mal- 
lows introduced  a  statist.ic C, for the selection of variables 
for regression 1181. C, is defined by 

6, = (&*)-I (residua.1 sum of squares) - N + 2p,  

where z2 is a  properly chosen estimat.e of u2, t,he unknown 
mriance of t,he true residual, N is t,he  number of observa- 
tions, and p is the number of variables  in regression. The 
expected  value of C, is roughly p if the fitt,ed model is 
exact, and  greater  ot,hemise. C, is an  estimate of the 
expected sum of squares of the prediction, scaled by u*, 
when the estimated regression coefficient.s are used for 
prediction and  has a. clearly defined meaning as a  measure 
of adequacy of the  adopted model. Defined with  this 
clearly defined criterion of fit, C,  attract.ed  serious  atten- 
tion of the people who were  concerned with  the <<ion 
analyses of practical data. See t,he references of [ H I .  Un- 
fortunately some subjective  judgement is required  for the 
choice of 62 in the definition of C,. 

At almost the same t.ime when C ,  was introduced, 
Da.visson [19] analyzed the mean-square  prediction  error 
of st,ationary Gaussia.n process when the est.imat.ed co- 
ef5cient.s of the predict.or were used for prediction and 
discussed the mean-square  error of an  adaptive smoot.hing 
filter [20]. The observed t.ime series xi is the  sum of signal 
si and additive whit,e noise ni. The filtered output, Zi is 
given  by 

L 
B* = p j x i + j ,  (i = 1,2,.. .J7)  

j = - Si 

where p j  is determined  from  t.he  sample xi (i = 1,2,. . . , X ) .  
The probiem is how t,o define L and M so that  the mean- 
square  smoothing  error over the N samples E[(l /N) cy=l (si - a,)’] is minimized. Under  appropriate  assump- 
tions of si and n i  Davisson [20] a.rrived at   an estin1at.e of 
this error which is defined by 

&x“ L, I -  W,L] = s2 + 2?(M + L + l ) /N,  

where s* is  an estimate of the error  variance  and E is the 
slope of the curve of s2 as a  funct.ion of ( X  + L)/A7 a t  
‘‘1a.rger” values of ( L  + X ) / N .  This  result is in close 
correspondence  with Mallows’ C,, and suggests the im- 
portance of t.his type of statistics in the field of model 
identificat,ion for  prediction.  Like  t.he choice of k2 in 
Mallows’ C, the choice of E in the present  st.atistic 6.v2 [ U ,  
L ]  becomes a. diffcult problcm  in pract.ical application. 

In 1969, without knowing t,he close relat,ionship with 
the above two procedures, the present author  introduced 
a  fitting  procedure of the  unirariate AR. model defined by 

[21]. In  this procedure t.he mean-square  error of the one- 
stepahea.d prediction obt.ained by using the least  squares 
estimates of t.hc coefficients is controlled. The mean- 
square  error is called t,he final prediction  error (FPE) and 
when the  data ; y i  (i = 1,2; . . , X )  are given its estima.t,e is 

Yi = alyi-1 + . . . + aPyi-, + xi, where xi is a  white noise 



defined by 

FPECP) = I < n :  + P ) / W  - d l  
. (eo - 6 e -  . . .  - 6 C )  

P l  1 PP P ? 

where the mean of yi is assumed to  be 0, P I  = (l!X)x>=;' 
yi+!yi and  are  obtained by solving the Tule-Walker 
equation defined by cr?s.  By scanning p successively from 
0 to  some upper limit L the identified modcl is given by 
the p and  the corresponding Bpi's n-hich give the nlinimum 
of FPE(p) ( p  = O.l;..,L). In  this procedure no sub- 
jective element is left in  the definition of FPE(p). Only 
the determination of the upper  limit L requires  judgerncnt. 
The characteristics of the procedure n-as further analyzed 
[ E ]  and  the procedure worked remarlcablp 1 ~ 1 1  with 
practical data [33],  1341. Gersch and  Sharp [25] discussed 
their experience of the use of the procedure.  Bhansali [?GI 
reports  vcrp disappointing  results, claiming that  they 
were obtained b -  dkailre's  method.  Actually the dis- 
appointing  results  are  due to his incorrect definition of 
the related  statistic  and  have nothing to  do with the 
present minimum FPE procedure. The procedure was 
extended to  the case of multivariate AR nlodcl fitting 
[ X ] .  A successful result of implementation of a computer 
control of cement kiln processes based on the results 
obtained by this identification  procedure was reported bJ- 
Otomo  and  others [as]. 

One common characteristic of the  three procedures 
discussed in this section is that  the analvsis of the  sta- 
tistics  has to be extended to  the order of 1 / S  of the main 
t,erm. 

IV. IIEAK LOGLIKELIHOOD AS A ~\IEASCRE OF FIT 

The well known fact that  the MLE is,  under  regularity 
conditions,  asymptotically efficient [29] shows that  the 
likelihood function tends  to be a most sensitive  criterion of 
the deviation of the model parameters from the  true values. 
Consider the situation where ~ 1 . x ~ .  . . . ,x.\- are obtained 
as the rcsults of 12: independent  observations of a random 
variable  with  probability  density  function g(r). If n 
parametric famil- of density  function is given by f(.&) 
with a vector  parameter 0. the average log-likelihood. or 
the log-likelihood divided by X ,  is given by 

.. 

(1/1V) log f(Zj18), (1) 
I =  1 

where. as in the sequel of the present paper, log denotes the 
natural logarithms. As X is increased  indefinitely, this 
average  tends,  with  probabilit- 1. to 

s(g;f(+))  = &(x) logf(.+) d.r, 

where the esistence of the integral is assumed. From the 
efficiency of IILE it  can  be seen that  the (average) mean 
log-likelihood S(g;f(. ! e ) )  must  be  a most sensitive  criterion 
to  the small deviation of f(x)8) from g(.r). The difference 

k f ( - l e ) )  = s(g;g) - s(g;f(.Io)) 
is kno-m as  the Iiullback-Leibler mean information for 

discrimination between g ( x )  and f(.le) and  takes positive 
value, unless f ( ~ i 8 )  = g(r) holds alnlost everyhere  [30]. 
These  observations show that S(g;f(.le)) n-ill be a reason- 
able  criterion for defining a best fitting model by  its 
maximization or, from the analogy to  the concept of 
entropy?  by minimizing -S(g:f(.18)). It should be men- 
tioned  here that  in 1950 this last quantity was adopted  as a 
definition of information  function b?. Bartlctt [31]. One 
of the most important  characteristics of S(g;f( .  l e ) )  is that 
its  natural  estimate,  the average log-likelihood (1). can  be 
obtained  without the knowledge of ~ ( s ) .  Xhen only one 
family f(s(0)  is given. maximizing the cstinlatc (1) of 
S(g;f( .  : e ) )  n-ith respect to 0 leads to  the NLE 4. 

In the case of statistical  idrntification. usually several 
families of f ( s ,e ) ,  with  different forms off(.+) and/or  with 
one and the samc form off(.+) but  with different restric- 
tions on the  paranwtcr  vector 8. are given and it is re- 
quired to decide on the best choice of j ( s i 0 ) .  Thc classical 
nlaxinlunl likelihood principle can not provide useful 
solution to  this  type of problems. -4 solution can  be 
obtained by incorporating thc basic idea underlying the 
statistics discussed in the prcceding section with the 
masimum likelihood principle. 

Considcr the situation where ~ ( s )  = j(r'8,). For  this 
case I ( g : f ( -  ,e ) )  and S ( q ; f ( .  10)) will simply be dcnotcd by 
l ( eo :e )  and S(e,;e), respectively. When e is sufficiently 
close to eo, I(8o;O) admit5 an approximation [SO] 

I(Oo;e, + A8) = ( + ) l , A O / i , ? :  

=-here 1!A8;1J2 = Ae'JAf3 and J is the Fisher information 
matrix which is positive definite and defined by 

where J i j  denotes the  (i.j)th element of J and ei the  ith 
component of 8. Thus n-hen the JILE 4 of eo lies very 
close to eo the deviation of the distribution defined by 
f(xl8) from the  true distribution j(.rbo) in terms of the 
variation of S(c/:f(. le)) will be measured by (f) I e - e&?. 
Consider the  situation n-here the  variation of 8 for maxi- 
mizing the  lildihood is restricted to  a lower dimensional 
subspace e of 0 v,-hich does not include 0,. For thc MLE 6 
of eo restricted in 8: if 6 which is in e and gives the 
maximum of S(e,;e) is sufficiently close to eo. it can be 
shon-n that  the distribution of X!;d - 6/ iJe  for sufficiently 
large l\7 is approsinlated  under  certain  regularity  conditions 
by n chi-square  distribution thc degree of freedom equal 
to  thc dimension of the restricted  parameter space. See, 
for example. [32]. Thus it holds that 

E-3.\71(eo;4) = - eo ~f + X., (2) 

where E ,  denotes the mean of the  approsinlate  distribu- 
tion and X. is the dimension of 8 or the number of param- 
eters  independently adjusted for thc masimization of the 
likelihood. Relation (2) is a  generalization of the expected 
prediction  error  underlping the statistic5 discussed in the 
preceding section.  When there  are several models it will 
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be  natural  to  adopt,  t,he one  which will give the  ninimum 
of EI(Oo;8). For this purpose,  considering the  situation 
where t,hese models have t,heir 8’s very close to  Bo, it. be- 
comes necessa,ry to develop  some estimate of NllO - 
Oo11J2 of (2). The  relation (2) is based  on the fact. t,hat  the 
asymptotic  distribut,ion of dhT(8 - 8 )  is approxima,t,ed 
by a Gaussian distribution  with mean zero and  variance 
mat,rix J-l. From  tahk fact. if 

is used as  an  estimate of RTl18 - OO/lJ2 it needs  a correctmion 
for  the downward  bias int.roduced by  replacing 8 by 8. 
This correct,ion is simply realized by  adding k to  (3). 
For the purpose of ident.ification only t.he comparison of 
the values of t,he estimates of EI(Oo;8) for various  models 
is necessary and  thus  the conlmon term  in (3) which 
includes eo can  be  discarded. 

v. DEFINITION O F  AN IhTORMATIOS CRITERION 

Based  on the  observations of the preceding sect,ion an 
informat,ion  criterion  AIC of 13 is defined by 

AIC(8) = (-2) log (maximum likelihood) + 2 ,  
where, as is defined before, k is t.he number of indepen- 
dent.ly  adjusted  parameters to get. 8. (l/N)AIC(8)  may be 
considered  as a.n estimate of -2ES(Oo;8). IC st,ands for 
infornlation  criterion  and A is added so that similar &a- 
tistics,  BIC, DIC  etc., ma>- follow. When there  are  several 
specificat.ions of f(z)O) corresponding to  several models, the 
MAICE is  defined by  the f(z(8) which gives the minimum 
of AIC(8). When there is only  one unrestricted family of 
f(zlO), the   J ldICE is defined by f(z(8) with 8 identical to 
the classical MLE. It should  be not,iced t.hat  an  arbitrary 
a.ddit,ive constant  can be int,roduced int.0 t.he definition of 
AIC(8)  when the comparison of the results for different 
sets of observations is not  intended.  The present, definition 
.of MAICE gives a mat,hematical formulat,ion of the prin- 
ciple of parsimony  in  model building. When the maxinlum 
likelihood is identical for two  models t.he MAICE, is t,he 
one defined witlth the smaller number of parameters. 

In t,ime series analysis, even  under  the Gaussia.n assump- 
tion,  the exact definition of likelihood is usually too com- 
plicated for practical  use  and  some  approximation  is 
necessary. For the applicat.ion of JIAICE t.here is a 
subtle problem in defining the approximat.ion to  the likeli- 
hood funct.ion. This is due to  the fact  that. for the definit,ion 
of AIC  the log-likelihoods must. be defined consistent.ly to 
the order of magnit,ude of 1. For the fitting of a shtionary 
Gaussia.n process  model a. measure of the  deviation of a 
model  from  a true  structure  can be defined as the limit of 
t.he average  mean log-likelihood when the  number of 
obserrat,ions A T  is increased indefinitely. This  quantity is 
ident.ica1 to  the mean log-likelihood of innovation defined 
by  the  fitted model. Thus  a  natural  procedure for t,he 
fitting of a st.ationary  zero-mean  Gaussian  process  model 
to t.he sequence of observations yl,y?,. . . , yay is t.o define a. 
primitive sta.t,ionarg Gaussian  model with t.he Z-lag CO- 

variance  matrices R@), which a.re defined by 

and fit a model by ma.ximizing t,he  mean log-likelihood of 
innovation or equivalently, if the elements of t,he co- 
variance  matrix of innovation a.re within the paramet,er 
set,  by minimizing the log-det,erminant of the  variance 
matrix of innovation, hT times of which is to be  used in 
place of the log-likelihood in the definit,ion of AIC.  The 
adoption of the divisor N in  the definition of R(1) is im- 
port.ant t.o keep t.he sequence of the covariance matrices 
positive definite. The  present  procedure of fitting  a 
Gaussian  model  t.hrough the primitive  model is discussed 
in  detail in [33]. It leads  naturally to t,he concept of 
Gaussian  estimate  developed  by 1Vhitt.le [31].  When the 
asympt.ot.ic distribution of t.he norma.lized correlation 
coefficient,s of yn is identical to  that of a  Gaussian  process 
the  asympt,otic  dist,ribution of the stat.istics defined as 
funct.ions of  these coefficie11t.s  will  a.lso be independent of 
the assumption of Gaussia.n process. This point  and  the 
asymptotic  behavior of the related  statist.ics n:hich is re- 
quired for the  justification of the present, definition of AIC 
is  discussed in det<ail  in the above  paper  by  Whittle. 
For the fitt.ing of a  univariat.e  Gaussian AR model  t,he 
MAICE defined with t,he present definit.ion of AIC is 
asympt.otically identical t.0 t,he est.imat.e obtainrd by the 
minimum FPE procedure. 

AIC  and  a  primitive definition of AIA1C.E were first 
introduced  by t,he present, author  in 1971 [3]. Some  early 
successful results of applications  are  reported in [ 3 ] ,  13.51, 
[36 1. 

VI. NUMERICAL EXAMPLES 

Before  going into  t,he discussion of t,he characteristics 
of MAICE it,s practical utilit,y is demonst,rated  in  this 
section. 

For the convenience of t,he  readers who might  wish to  
check the  results  by  t,hemelves Gaussian AR models were 
fitted t,o t.he data given  in  Anderson’s  book  on t.ime series 
analysis  [37]. To t.he 1+’old’s three series artificially gen- 
erat.ed by the second-order AR schemes  models up t,o t.he 
50th  order  were  fitted. In two cases t.he MAICE’S mere 
the second-order  models. In  the case where the XAICE 
was the first-order model, the second-order coefficient of 
the  generating  equation  had  a  very small  absolute  value 
compared with  its sampling  variability  and the one-step- 
ahead prediction error  variance  was smaller for the 
MAICE  than for t.he second-order  model defined tvith the 
MLE’s of t,he coefficients. To t.he classical serirs of Wolfer’s 
sunspot  numbers  with N = 176 AR models up  to t,he 
35th  order were fitted  and  the  MAICE was the eight.h- 
order  model. AIC  att.ained  a local minimum  at. the second 
order. In  the case of the series of Beveridge’s  wheat price 
index wit.h N = 370 the  MAICE  among t.he AR model up 
to  the  50th order was again of the eight,h order.  XIC 
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attained a local minimum at  the second  order which was 
adopted by Sargan  [38]. In the light of the discussions of 
these series by Anderson,  t,he choice of eight-order models 
for these  two series looks reasonable. 

Two examples of applicat.ion of the minimum FPE pro- 
cedure, which produces  est.imates  asymptotically  equiva- 
lent, to  I\IAICE’a, are report.ed  in [3].  In tJhe  example 
taken  from  the book by Jenkins  and  Watts 139, sec.tion 
5.4.31 the estimate was identical to  the one chosen by  t,he 
authors of the book after a  careful  analysis. In  t>he case of 
the seiche record  treat.ed by Whit.t.le [40] t.he  minimum 
FPE procedure clearly suggested t.he need of a very high- 
order AIR model. The difficu1t.y of fitting  AR models t o  
this  set of data was discussed by  Whittle [41, p. 381. 

The procedure was also applied to  the series E and F 
given in the book by Box and  Jenkins [E] .  Second- or 
third-order AR model was suggested by the  authors for the 
series E which is a part of the Wolfer’s sunspot  number 
series  with A 7  = 100. The  MAICE among the AR models 
up  to  the 20th  order was the second-order model. Among 
the AR models up  to t.he 10th  order fitt,ed to  the series F 
with S = ‘70 the I\LUCE was the second-order model, 
m-hich agrees  with the suggestion made by the  authors of 
t,he book. 

To  test  the  ability of discriminating  between AR and 
MA models ten series of yn ( n  = 1,. . . ,1600) were gener- 
ated by the relation y, = x, + O.~X,-~ - O.lx,-?, where 
x, was generated  from  a physica.1 noise source and was 
supposed to  be a  Gaussian  white noise. AR models were 
fitted  to  the first W points of each series for  N = 50, 100, 
200, 400, 800: 1600. The sample  averages of the JIAICE 
AR order were 3.1, 4.1, 6.5, 6.8,  8.2, and 9.3 for the SUC- 

cessirely  increasing  values of N .  An approximate JIAICE 
procedure which is designed to  get. an initial  est.imate of 
1\IA41CE for the fitting of 3Iarkovian models, described  in 
[33]. nas applied to  the  data.  With only a few exceptions 
t.he  approximate  IIAICE’s were of the second order.  This 
corresponds to  the AR-MA model with a second-order 
AR and a first-order M A .  The second- and third-order A I A  
models xere  then fitted to  the dat.a  with h: = 1600. 
Among the AR and MA models fitted to  the dat,a  the 
second-order X I  model mas chosen nine  times  as  the 
3L4ICE and  the t.hird-order J1A was chosen once. The 
average difference of the minimum of llIC between AH. 
and JI-4 models was 7.7, which roughly mea.ns that  the 
expected likelihood ratio of a pair of t,wo fitt.ed models 
will be about 47 for  a set of data  with N = 1600 in favor of 
M A  model. 

Another  test was made  with the example discussed by 
Gersch and  Sharp  [%I.  Eight series of length K = 800 
were generated  by an AR-MA scheme described in the 
paper.  The  average of the AIAICE AR orders was 17.9 
which is in good agreement  n-ith the value  reported b?- 
Gersch and  Sharp.  The  approximate  JIAICE procedure 
was applied to determine the order or t.he dimension of the 
Markovian  representation of the process. For the eight, 
cases the procedure  identically picked the correct  order 
four. AR-X4 models of various  orders were fitted to one 

set of d a h  and t.he corresponding  values of AIC(p,q) were 
computed,  where  AIC(p,q) is the value of .$IC for the 
model with AR order p and  IIA order p and was defined by 

AIC(p,q) = N log (3ILE of innovation  variance) 

+ X P  + $9. 
The results  are  AIC(3,2) = 192.72,  AIC(1,3) = 66.54, 

and  AIC(5,4) = 69.43. The minimum is attained at 
p = 4 and q = 3 which correspond to  the  true  structure. 
Fig. 1 illustrates the estimates of the power spectral 
demit.y  obtained by applying  various  procedures to  this 
set of data. It should be mentioned that, in this example 
the Hessian of the mean log-likelihood function becomes 
singular at  the  true values of the parameters for the 
models with p and q simultaneously greater  than 4 and 3, 
respectively. The detailed discussion of the difficulty 
connected  with  this  singularity is beyond the scope of the 
present  paper. Fig. 2 shows the results of application of 
the same type of procedure to  a record of brain wave with 
N = 1120. In this case only one AR-JIA model with AR 
order 4 and ITA order 3 was  fitted.  The value of AIC of 
this model is 1145.6 and  that of the 1IAICE AR model is 
1120.9. This suggests that,  the  13th order MAICE AR 
model is a better choice, a conclusion which seems in 
good agreement.  with the impression obtained  from the 
inspection of Fig. 2. 

AIC(4>4) = 67.44, AIC(5,3) = 67.18 ;2IC(6,3) = 67.65, 

VII. DISCCSSIOXS 

When f(al0) is very  far from g(x), S(g;f(. je)) is only a 
subjective  measure of deviation of f(.r(e) from g(r). Thus 
the general discussion of the characteristics of 3IAICE 
nil1 only be possible under  the assumption that for a t  
least one family f(&) is sufficiently closed to  g(r) com- 
pared  with the expected  deviation of f(sJ6) from f(rI0). 
The detailed  analysis of thc statistical  characteristics of 
XXICE is only necessary when there  are several families 
which sa.tisfy this condition. As a single estimate of 
-2A7ES(g;f(.)8)), -2 times the log-mitximum likelihood 
will be sufficient but for the present  purpose of “estimating 
the difference” of -3XES(g;f(. 18)) the introduction of the 
term +2k into  the definition of AIC is crucial. The dis- 
appointing  results  reported by Bhansali [%I were due to  
his incorrect use of the statistic.  equivalent to using +X. 
in place of  +?X- in AIC. 

When the models are specified by a successive increase 
of restrictions on the parameter e of f(rl0) the AIAICE 
procedure takes a  form of repeated  applications of con- 
ventional log-likelihood ratio  test of goodness of fit with 
automatically  adjusted lcvels of significance defined by 
the  terms +4k. Nhen  there  are different families approxi- 
mating the  true likelihood equally well the situation will 
at least locally be  approximated b?- the different para- 
metrizations of one and  the same  family. For these cases 
the significance of the diffelence of AIC’s bet\\-cen two 
models will be  evaluated  by  comparing it u-ith the vari- 
abi1it.y of a chi-square variable  with the degree of freedom 
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Fig. 1. Estimates of an AR-MA spectrum:  theoretical  spectrum (solid t.hin line  with  dots), AR-MA estimate  (thick 
line), AR estimate (solid thin line),  and  Hanning windowed estimate  with  maximum  lag 80 (crosses). 

'iw 5.00 10.00 15.00 

Fig. 2. &timates of brain  wave  spectrum: =-MA est.imate (thickline), AR estimat,e (solid thin  line),  and  Hanning 
windowed estimate  with  maximum lag 150 (crosses). 
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equal to  the difference of the k’s of the two models. When 
the two models form separate families in t.he sense of Cos 
[ E ] !  [43] the procedure developed by Cos and extended 
by Walker [a] to  time series situation may  be useful for 
the detailed  evaluation of the difference of XIC. 

It must be clearly recognized that  I\IXICE  can  not be 
compared  with a. hypothesis  testing  procedure unless the 
latter is defined as a decision procedure  with  required 
levels of significance. The use of a Lxed level of Significance 
for the comparison of models with  various  number of 
parameters is wrong since this dors not takc  into account 
the increase of the variability of the estimates \ d m 1  thc 
number of parameters is increased. As will be seen bp the 
work of Kennedy and Bancroft [45] the  theory of model 
building based on a sequence of significance tests is not 
sufficient.ly developed to  provide  a  practically useful 
procedure. 

Although the present author  has no proof of optimalit>- 
of MAICE it is at present. the only procedure  applicable to 
every  situation  where the likelihood can be properly 
defined and  it is actually  producing  very reasonable results 
n-ithout very muchamount of help of subjective  judgement. 
The successful results of numerical experiments suggest 
almost  unlimited  applicabilitv of MAICE in  the fields of 
modeling, prediction, signal detection, pattern recognition. 
and  adaptation.  Further improvements of definition and 
use of .AIC and numerical  comparisons of JLUCE with 
other procedures  in  various specific applications will be 
the subjects of further  stud>-. 

VIII. COWLUSION 
The practical  utility of the hypothesis  testing  procedure 

as  a  method of statistical model building or identification 
must  be considered quite  limited. To develop useful 
procedures of identification more direct  approach to  the 
control of the error or loss caused  by the use of the identi- 
fied model is necessary. From  the success of thc classical 
maximum likelihood procedures  t he mean log-likelihood 
seems to  be a natural choice as the criterion of fit of a 
statistical model. The X U C E  procedure based on -4IC 
which is an  estimate of the mean log-likelihood proyides  a 
versatile  procedure for the statistical model identification. 
It also provides a mathematical  formulation of the prin- 
ciple of parsimony in the field of model construction. 
Since a  procedure based on AIAICE  can  be  implemented 
without the aid of subjective  judgement, thc successful 
numerical  results of applications suggest that  the implc- 
mentations of many  statistical  identification  proccdurcs 
for  prediction, signal detection?  pattern recognition, and 
adaptation will be  made  practical 11-ith AIBICE. 
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Some Recent  Advances in Time Series Modeling 
EMANUEL PARZEN 

Absfract-The aim of this paper is to  describe  some of the impor- 
tant concepts and  techniques which seem  to  help provide a solution 
of the  stationary  time  series problem  (prediction and  model  iden- 
aca t ion) .  Section 1 reviews  models.  Section Il reviews  predic- 
tion  theory  and develops  criteria of closeaess of a “fitted”  model  to 
a  ‘‘true”  model.  The  cential  role of the infinite  autoregressive  trans- 
fer function g, is developed, and  the  time  series modeling  problem 
is defined to  be  the estimation of 9,. Section In reviews  estimation 
theory.  Section IV describes  autoregressive  estimators of 9,. 
It  introduces a ciiterion  for  selecting the  order of an autoregressive 
estimator which can be  regarded as determining the  order of an 
AR scheme  when in fact  the  time  series is generated by an AR 
scheme of h i t e  order. 

T 
I.  INTRODUCTION 

HE a.im of this  paper is t.0 describe some of the im- 
portant.  concepts and techniques which seem to me 

to  help  provide  realistic models for the processes generating 
observed time series. 

Section I1 reviexi-s t,he types of models (model concep- 
t>ions) which statisticians  have developed for  time series 
analysis  and  indicates  the  value of signal  plus noise de- 
compositions as compared x7it.h simply an autoregressive- 
moving average (ARMA) represent,ation. 

Section I11 reviem prediction  theory and develops 
criteria. of closeness of a “fitted” model t.0 a ‘%we” model. 
The central role of the infinit.e autoregressive  transfer 
function y, is developed, and  the t>ime series modeling 
problem is defined to be  t,he est.imat.ion of y,. 

Section I11 review  the estimation  theory of autore- 
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gressive (AR) schemes and 
equat,ions. It develops an 

the basic role of Yule-Wa.lker 
anaIogous t,heory for moving 

average (ALA) schemes, based on the  duality betu-eenf(w), 
the spect,ral  density and inverse-spectral  density, and 
R(v) and R i ( v ) !  the cova.riance and covarinverse. The 
estimation of Ri(v) is shown t.0 be  a consequence of t.he 
estimation of y,. 

Section V describes autoregressive  estimators of y,. It. 
introduccs a. criterion  for selecting the order of an  auto- 
regressive estimator which can  be  regarded a.s determining 
t.he  order of an AR scheme when in  fact t.he time  series is 
generat,ed by  an AR scheme of finite  order. 

11. TINE SERIES MODELS 

Given observed data, st.atistics is concerned with in- 
ference from what z m s  observed to  what might  have beet1 
observed;  More precisely, one postulates  a proba.bi1it.y 
model for the process genemting  t.he  data.  in n-hich some 
parameters  are unknown and  are to be  inferred  from the 
data. Stat.istics is t,hen concerned v-it.h parameter inference 
or  parameter identifica,tion (determinat,ion of parameter 
values  by  estimation and hypothesis  test.ing  procedures). 

A model for data is called structural if its  paramekrs 
have a natural or structural  interpretation; such models 
provide explanation and control of t,he process generating 
the da,ta. 

When no models are available for a. data  set from  theory 
or experience, it  is st,ill possible to fit models u-hich suflice 
for simulat ion (from what  has been  observed,  generate 
more data similar t.o that observed), predictio??. (from what. 
has been observed,  forecast t.he data  that will be  observed), 
and pa.ttern recognition (from what  has been observed,  infer 


